Falownik do dojarki Badania falownika do dojarki

Badania falownika do dojarki

Falownik Vacon SPA MOD ID 11369150

Badania falownika do dojarki prowadzono we współpracy z trzema pompami próżniowymi. Były to pompy typu VP 76, VP 78 oraz DVP 1200.

Podczas badań, używałem niżej wymienioną aparaturę pomiarową:

  1. Miernik obrotów, elektroniczny i mechaniczny
  2. Amperomierz
  3. Watomierz
  4. Licznik kilowatogodzin
  5. Elektryczny licznik godzin pracy
  6. Wakuometr kl 06
  7. Przepływomierz powietrza AFM 3000

Wyniki pomiarów falownika do dojarki laboratoryjnych przedstawiono w tabelach poniżej.

Przedstawiono charakterystyki pracy pomp próżniowych przy podciśnieniu 50kPa. Ma to na celu możliwość porównywanie wyników między sobą. Przedstawiono również wyniki pomiarów pracy pomp próżniowych, współpracujących z falownikiem.

W oparciu o wyniki przedstawione w tabelach można powiedzieć, że po zastosowaniu falownika, który zmniejszy częstotliwość prądu doprowadzonego do silnika z 50Hz do 30Hz zmniejszy się wydajność pomp

Pompy VP 76 z 900 l/min do 400 l/min czyli o 56%

DVP 1200 z 1550 l/min do 900 l/min czyli o 42%

VP 78 z 2600 l/min do 1350 l/min czyli 48%

To są największe możliwości zmniejszenia wydajności badanych pomp próżniowych wykorzystując do tego celu falownik do dojarki. Przy zmianie częstotliwości prądu z 50Hz do 30Hz obroty silników zmniejszyły się z 1440 obr/min do 860 obr/min u pomp VP 76 i VP 78 a u pompy DVP z 1440 do 840 obr/min.

Podobnie, przy zmianie częstotliwości prądu zmieniło się zapotrzebowanie na moc, patrz tabele.

U pompy VP 76 z 2,458kW do 1,732kW czyli o 30%

DVP 1200 z 3,38kW do 2,05kW czyli o 40%

VP 78 z 5,588kW do 3,352kW czyli o 40%

Przyjmując, że silnik pompy próżniowej będzie pracował tylko przy najniższej dopuszczalnej częstotliwości czyli 30Hz to można zaoszczędzić od 30% do 40% zużywanej energii. Mankamentem jest tylko to, że pracując przy takiej częstotliwości przez dłuższy czas będzie przegrzewał się falownik do dojarki, oraz silnik elektryczny. Albo falownik sam się wyłączy – takie ma zabezpieczenie, albo przy większym falowniku, spali się silnik elektryczny.

Pompa VP 76 pracująca z falownikiem do dojarki

Lp.

Częstotliwość

Hz

Obroty

obr/min

Wydajność

l/min

Natężenie

A

Moc

kW

1.2.3.

4.

50

40

33

30

1440

1160

940

860

900

650

520

400

4,4

4,0

3,6

3,1

2,46

2,23

2,01

1,73

Pompa DVP 1200 pracująca z falownikiem do dojarki

Lp.

Częstotliwość

Hz

Obroty

obr/min

Wydajność

l/min

Natężenie

A

Moc

kW

1.2.3.

4.

50

45

40

30

1420

1280

1150

840

1550

1370

1200

900

6,6

5,8

5,2

4,0

3,38

2,38

2,67

2,05

Pompa VP 78 pracująca z falownikiem do dojarki

Lp.

Częstotliwość

Hz

Obroty

obr/min

Wydajność

l/min

Natężenie

A

Moc

kW

1.2.3.

4.

50

40

33

30

1440

1150

940

860

2600

1900

1500

1350

10,0

8,4

6,5

6,0

5,59

4,67

3,36

3,35

Pompa VP 76 silnik krótkozwarty moc 2,2kW cos 0,8

Lp.

Podciśnienie

kP

wydajność

l/min

Natężenie

A

Moc

kW

1.2.3.

4.

5.

55

50

45

40

35

740

850

950

1050

1150

4,3

4,25

4,25

4,25

4,20

2,28

2,19

2,16

2,16

2,13

Pompa DVP 1200 silnik krótkozwarty  3kW cos 0,78

Lp.

Podciśnienie

kP

wydajność

l/min

Natężenie

A

Moc

kW

1.2.3.

4.

5.

55

50

45

40

35

1180

1340

1520

1680

1850

6,5

6,5

6,3

6,2

6,1

3,33

3,33

3,23

3,18

3,12

Pompa VP 78 silnik krótkozwarty 5,5 kW cos 0,85

Lp.

Podciśnienie

kP

wydajność

l/min

Natężenie

A

Moc

kW

1.2.3.

4.

5.

55

50

45

40

35

1860

2160

2400

2700

3000

10,5

10,0

9,7

9,5

9,3

5,86

5,58

5,42

5,30

5,13

Korzyści wynikające z używania dojarek systemu Swing over – obróć i dój

Hala udojowa typu  Swing over nazywana także Midi-Level Milk Line to instalacja w której jeden aparat udojowy obsługuje na przemian obie strony kanału

soso6so1so999so4so9999so99999

Wykres cyklu dojowego
Wykres cyklu dojowego

Korzyści wynikające z używania dojarek systemu Swing over – obróć i dój

  1. Skrócenie czasu doju w porównaniu do klasycznej rybiej ości o 20% co zmniejsza i pozwala na pełne wykorzystanie nakładów pracy ludzkiej
  2. Podniesienie jakości wydojonego mleka poprzez schłodzenie go do temperatury 4°C w systemie  podwójnego  schładzania wstępnego. Pozyskana ciepła woda wykorzystywana jest do pojenia krów zaraz po dojeniu
  3. Rozdzielenie mleka „zdrowego” od „chorego” poprzez zastosowanie systemu DUMP Milking z równoległą rurą i oddzielną jednostką końcową.
  4. Mleko „zdrowe” przepompowywane jest do schładzalnika pompą membranową dużej objętości nie zmieniającą jego jakości
  5. W hali można zamontować system podawania paszy w czasie udoju

Instrukcja obsługi dojarki typu Swing over

Wpuścić krowy na jedną stronę hali udojowej. Po ustawieniu krów podłączyć aparaty udojowe.

Maksymalny potok mleka pojawia się po 1 minucie po pierwszej stymulacji i trwa do 8 minut. Podłączenie aparatów w ciągu 2 minut po pierwszej stymulacji  daje maksymalny udój mleka.

Dojarka Swing over
Dojarka Swing over

Po podłączeniu aparatów udojowych w pierwszej grupie krów  następuje wprowadzanie krów na drugą stronę hali.

Dojarka swing over
Dojarka Swing over

Po wydojeniu pierwszej grupy przenosimy aparaty udojowe na przygotowane krowy z drugiej grupy, pierwszą wypuszczamy aby zwolnić miejsce na wejście następnej

Idea instalacji „Obróć i dój” polega na tym, żeby aparaty udojowe pracowały bez przerwy

Dojarka Swing Over
Dojarka Swing Over
Dojarka Swing Over
Dojarka Swing Over

Po opuszczeniu platformy przez ostatnią krowę możemy zamknąć wyjście i otworzyć bramką wejściową dla kolejnej grupy. Po wejściu wszystkich krów do hali zaczyna się przygotowanie do kolejnej zmiany aparatów udojowych.

Dojarka Swing Over
Dojarka Swing Over

Instalacja udojowa  PE 1×8 z samościągaczami aparatów udojowych  umożliwia  wydojenie 80 krów w ciągu godziny, w instalacji typu rybia ość 2×4 odpowiednio 56 krów.

System podawania paszy w hali udojowej:


so7so8

 

1x8 irl a rybia osc 2x8

Czy stosowanie falownika w dojarniach jest celowe?

W aneksie A.6 do normy ISO 5707 podano przykłady obliczeń wymaganej wydajności pompy próżniowej dla dojarni z 12 aparatami udojowymi (2 x 6) z pełnym wyposażeniem (ACR), w której dojone są krowy przy podciśnieniu 44kPa. Z przykładu tych obliczeń wynika, że rezerwa efektywna dla tej dojarni powinna wynosić 520 l/min. Po uwzględnieniu zużycia powietrza przez aparaty udojowe i uwzględnieniu dopuszczalnych nieszczelności rurociągów i regulatora itp., ostateczna wydajność pompy przy podciśnieniu 50kPa powinna wynosić 1260 l/min, po przeliczeniu podciśnienia z 44kPa na 50kPa.

Z przykładu tych obliczeń wynika, że rezerwa efektywna stanowi 42% wymaganej wydajności pompy próżniowej. Tyle to z wydajności pompy próżniowej nawet i trochę więcej powietrza wpuszczane jest przez regulator, gdyż nie zawsze aż tyle to powietrza jak dopuszcza norma zużywają aparaty udojowe, podobnie jak i nie zawsze są tak duże nieszczelności których górne granice ustalono w normie. Gdy falownik będzie właściwie dobrany do silnika elektrycznego napędzającego pompę próżniową, to o taką ilość powietrza (rezerwę efektywną) wpuszczaną normalnie przez regulator mogłaby pompa mniej przepompowywać.

W dojarniach typu „Rybia ość”, istnieją jeszcze przerwy w pracy aparatów udojowych, gdy wchodzą i wychodzą krowy z dojarni. W tym to czasie zużycie powietrza jest jeszcze mniejsze, gdyż nie pracują pulsatory i nie wpuszczane jest powietrze (około 10 l/min) do kolektorów. O tyle jeszcze można by zmniejszyć wydajność pompy próżniowej w czasie wymiany krów w dojarni, ale tego zmniejszenia nie uzyska się falownikiem. Podałem, że maksymalnie falownik zmniejszy o 56%, 48% lub 42% wydajność pompy próżniowej. Eksploatując falownik w naszej dojarni „Rybia ość” 2 x 4, uzyskałem zmniejszenie zużycia prądu o 34%. Normalnie w czasie godziny pracy w tej dojarni zużywamy 3,19kWh na godzinę doju. Po włączeniu falownika, zużycie prądu wynosiło 2,12kWh podczas godziny pracy dojarni.

Ostateczny wniosek jest taki, że zastosowanie falownika w przeciętnej dojarni, przyczyni się do zaoszczędzenia zużywanej energii do 30 do 40%. Sam falownik, który ma zawsze pracować zużywa na dobę 0,92kWh. W instrukcji falownika napisano, że przy podłączeniu go do sieci należy ustalić i zachować kolejność faz. Fachowiec, który go doregulowywał twierdził, że kolejność faz nie musi być zachowana.

W laboratorium i w oborze zachowaliśmy kolejność faz przy podłączeniach. Sterowanie i ustalanie wymaganych parametrów w falowniku nie powinno być tak mocno skomplikowane. W falowniku przeznaczonym do urządzeń udojowych, wystarczyłby jeden przycisk, którym ustalałoby się wymagane podciśnienie.

Pulsacja w dojarkach mechanicznych na miarę XXI wieku

Od wielu lat Polska bombardowana jest hasłami reklamowymi propagującymi wyższość tanich produktów nad innymi, w domyśle droższymi , legendarne już : Ociec prać … lub : …po co przepłacać jeśli można kupić taniej … wyrabiają w klientach przekonanie, że tylko tanie produkty są tymi których potrzebują. Wywołują w podświadomości milionów konsumentów przekonanie, że wszystko co tanie jest najlepsze a produkty droższe są im wręcz nie potrzebne. Reklamy wywołują poczucie, że konsumenci są oszukiwani przez sprzedawców oferujących produkty droższe od tych „najlepszych”, czyli tanich.  W ten sposób świat zalewa fala śmieci, kopii i tandetnych podróbek, tryumfuje strategia która szkodzi nam wszystkim. Przykładowe „Ociec prać…” dotyczy tanich proszków do prania które niszczą nasze ubrania szybciej niż wichry mody wymuszające zmiany w garderobie już nie co kilka lat a kilka razy w czasie jednego sezonu. Przy potencjale produkcyjnym jaki osiągnęli producenci tekstyliów można się pogodzić z tym, że koszula czy spodnie już po jednym praniu nie nadają się do użycia. Wręcz nie wolno! jeśli kupujemy, podzespoły, urządzenia lub części które mają pomagać nam w pracy, ułatwiać ją, obniżać jej koszty. Pulsatory tak jak wiele innych urządzeń niezbędnych człowiekowi nie podlegają modzie i jeśli mają być naprawdę dobre nie będą tanie,  na ich cenę ma  wpływ wiedza jaką posiada producent i materiały z których zostały wykonane. Tanie kopie (chińskie czy tureckie) nawet jeśli w krótkim czasie zmieszczą się w parametrach norm Unii Europejskiej nie popracują tak długo i tak efektywnie jak pulsatory firmy INTERPULS czy PearsonPrawidłowa pulsacja we współczesnych dojarkach dla krów zależy od wielu czynników, jednymi z najważniejszych są konstrukcja i materiały z których jest wykonany pulsator. Sam pulsator czy to do doju pojedynczego czy przemiennego jest zaworem sterującym przepływem powietrza atmosferycznego i podciśnienia, zatem, by działał sprawnie powinien mieć jak najszersze przekroje kanałów wewnętrznych, tak by przepływające powietrze lub podciśnienie mogło w jak najkrótszym czasie dotrzeć do przestrzeni pomiędzy kubkiem udojowym a gumą strzykową. Załączony schemat z katalogu firmy INTERPULS

Pulsacja - schemat
Pulsacja – schemat

prezentuje poszczególne  fazy doju, przy czym EU norma określa, że producent pulsatorów powinien podać częstotliwość pulsacji przy określonym podciśnieniu i temperaturze. W warunkach określonych przez producenta częstotliwość pulsacji musi mieść się w zakresie +/- 5% wartości nominalnej, najczęściej zalecaną wartością jest 60 pulsów na minutę . Norma dopuszcza 5% poślizg pomiędzy kanałami w pulsatorach doju przemiennego.  O parametrach pulsatora świadczą czasy poszczególnych faz jego pracy.

a + b + c + d = 100% = 1 s przy 60-u pulsach na minutę

przy czym a +b to faza ssania , c+ d to faza masażu. Norma określa, że faza b musi być dłuższa niż 30% jednego cyklu (30% jednej sekundy) , a faza d nie może być krótsza niż 15% jednego cyklu pulsacji ( 15 % 1-ej sekundy). Bezpośredni związek z fazami b i d mają fazy a i c, im będą one krótsze, tym dłuższe będą efektywne części faz ssania i masażu. Tylko nowoczesne pulsatory wykonane z doskonałych materiałów zapewniają wysokie parametry doju.

Elektrobuster - sterowanie elektroniczne
Elektrobuster – sterowanie elektroniczne
Elektrobuster
Elektrobuster

Irlandzki Elektrobuster  firmy PEARSON wyróżnia się na tle innych pulsatorów ponadczasową budową, zupełnie nie podobny do klasycznego pulsatora , skonstruowany 40 lat temu !, początkowo przeznaczony tylko do doju pojedynczego może nadal spełniać swoje zadanie ( przy doju przemiennym do dwu Elektrobusterów podłącza się dwa aparaty udojowe) dzięki dużym średnicom (10 mm) wewnętrznych przewodów podciśnieniowych oraz dużej powierzchni przepuszczającej na przemian powietrze i podciśnienie do komory pomiędzy gumą strzykową a kubkiem udojowym. Dzięki temu zarówno w Pneumobusterze jaki i w  Elektrobusterze fazy a i c są ekstremalnie krótkie, zaś b i d osiągają maksymalne wartości nawet przy długich przewodach podciśnieniowych (5,2m).

Pulsator elektroniczny Pearson
Pulsator elektroniczny Pearson

Sterowanie Elektrobusterami odbywa się tak, jak w innych pulsatorach elektronicznych poprzez odrębny programator , Pneumobuster jest urządzeniem powtarzającym zewnętrzny sygnał i może współpracować z dowolnym pulsatorem elektronicznym (także z EL 30) lub pneumatycznym (np. z L02) , dzięki wcześniej omówionym zaletom konstrukcyjnym idealnie przekazuje sygnały sterujące do kolektora udojowego, bez strat związanych z długością przewodów podciśnieniowych.

Pneumobuster sterowanie pneumatyczne
Pneumobuster sterowanie pneumatyczne
Parametry badania pulsacji
Parametry badania pulsacji
Pulsator elektroniczny INTERPULS LP30
Pulsator elektroniczny INTERPULS LP30

Porównując pomiary parametrów pulsacji wykonanych dla pulsatorów  L02; LP30 i Irlandzkich Elektro i Pneumobuster,  przy wężach podciśnieniowych o średnicy wewnętrznej 10 mm i długości 3,5m , sterujących  pracą kolektora Orbiter 350 uzyskano wyniki prezentowane w zestawieniach.

Parametry badania pulsacji
Parametry badania pulsacji
Parametry badania pulsacji
Parametry badania pulsacji

Wszystkie badane pulsatory spełniają wymagania normy, jednak najlepszy obecnie na rynku pulsator L02 w porównaniu do pozostałych testowanych jest „wolniejszy” ze względu na suwakowe sterowanie  przepływu powietrza i podciśnienia, które jest wrażliwe na zanieczyszczenia i wymaga regularnego serwisowania z regulacją włącznie. Jego zaletą poza ceną w porównaniu do Peumobustera są małe rozmiary i zwarta budowa, która pozwala na używanie tych pulsatorów w dojarkach bańkowych i rurociągowych. W halach udojowych gdzie gabaryty pulsatorów nie mają decydującego znaczenia zestaw para Elektrobuster-ów lub LP30 + odpowiednia ilość Pneumobustrów lub po jednym LP30 na każdy aparat udojowy,  dadzą zdecydowanie lepsze parametry doju, przy proporcjonalnych do tych parametrów kosztach zakupu zestawu pulsatorów.

Pearson - schemat
Pearson – schemat

Kolejną zaletą pulsatorów elektronicznych poza odpornością na zanieczyszczenia mechaniczne co gwarantuje ich długowieczność jest zdolność skutecznej pracy przy obniżonych podciśnieniach. Ewentualnym zanikom energii łatwo zaradzić stosując zasilane 12V, dzięki czemu w sytuacjach awaryjnych pulsatory mogą być zasilane z akumulatora ciągnika napędzającego jednocześnie poprzez wałek mocy pompę podciśnieniową.

Wybór właściwego rozmiaru chłodnicy płytowej do wymiennika ciepła

Zalecany rozmiar wymiennika płytowego jest zdeterminowany prędkością przepływu mleka. Jest to uzależnione od ilości stanowisk udojowych, liczby dojarzy oraz typu dojarki . Jeden operator zwykle nie wydoi więcej niż 10 krów na godzinę na jednym stanowisku. Zakładając, że każda dojona krowa daje 18 litrów /h, niezbędny będzie wymiennik płytowy 1800 L/h. W zależności od ilości aparatów udojowych i ilości pozyskanego mleka należy dobrać przepływy wody chłodzącej według zestawienia :

4 zestawy udojowe 900 L/hMinimalny przepływ wody 2270 L/h
6 zestawów udojowych 1350 L/hMinimalny przepływ wody 3400 L/h
10 zestawów udojowych 1800 L/hMinimalny przepływ wody 4500 L/h
16 zestawów udojowych 2724 L/hMinimalny przepływ wody 6800 L/h
20 zestawów udojowych 3600 L/hMinimalny przepływ wody 9000 L/h
Tabela porównawcza temperatur mleka i wody na wyjściu chłodnicy płytowej dla mleka o temp. wejściowej 35º C
Temp.wody chłodzącej na wlocieStos.wody chł. do mleka (1:1)Stos.wody chł. do mleka(2 :1)Stos.wody chł. do mleka (3:1)
Temp. wodyTemp. mlekaTemp. wodyTemp. mlekaTemp. wodyTemp. mleka
10 º C27 º C20 º C20 º C15 º C17 º C14 º C
15 º C28 º C21 º C23 º C19 º C21 º C18 º C
20 º C30 º C25 º C27 º C23 º C25 º C22 º C

Pompa mleczna tłocząca mleko przez chłodnicę powinna mieć zmienną wydajność. Pozwala to na optymalne wykorzystanie zainstalowanego schładzalnika. Większość pomp mlecznych stosowanych to pompy membranowe, z możliwością regulacji prędkości obrotowej lub pompy wirnikowe pod warunkiem, że można regulować ich prędkość . Preferowaną i polecaną jest pompa membranowa, która pompuje łagodnie, równomiernie bez niepotrzebnego rozbijania mleka.
Istotne znaczenie dla wielkości przepływu ma użyty filtr mleczny. Powinien być zainstalowany przed schładzalnikiem co zapobiega ewentualnemu zabrudzeniu i przytkaniu płyt wymiennika ciepła.
Prosimy o kontakt osoby zainteresowane naszymi schładzalnikami mleka i instalacjami jego pozyskiwania, oferujemy pomoc, doradztwo i opiekę techniczną.

Przykładowy schemat instalacji schładzania mleka
Przykładowy schemat instalacji schładzania mleka

Płytowy wymiennik ciepła

Płytowy wymiennik ciepła firmy nazywany również  schładzalnikiem płytowym, został zaprojektowany dla wstępnego schłodzenia mleka w gospodarstwach mlecznych przy pomocy jedno lub dwustopniowego procesu schładzania mleka transportowanego do schładzalnika z wykorzystaniem dobrze schłodzonej wody. Efektem schładzania mleka jest jednoczesne podgrzewaniem wody pitnej dla krów.

Ponieważ krowy wypijają 4 do 6 litrów wody na 10 kg suchej karmy i szczególnie chętnie piją po dojeniu, system płytowego schładzania mleka pozawala uzyskać przez cały rok wodę pitną o stałej temperaturze, co ma istotny wpływ na ich wydajność mleczną .Oferowane systemy są wysoko cenione nie tylko przez irlandzkich rolników, ale także przez mleczarnie, które skupują dzięki nim wysokiej jakości surowiec. Konstrukcja płytowych wymienników ciepła pozwala na dowolne rozbudowywanie lub ewentualne zmniejszanie wydajności urządzenia przez proste usuwanie lub dodawanie płyt chłodzących. Przy współczynniku 2,5 L wody do 1L mleka możliwe jest uzyskanie temperatury mleka, od 2 do 4 ºC wyższej niż temperatura wody na wejściu do chłodnicy.  Kompletna i szczelna zabudowa schładzalników płytowych zapewnia utrzymanie wysokiej higieny i czystości mleka w instalacji. Wszystkie płyty chłodzące są łatwe do wyczyszczenia na miejscu, odporne na korozje i ewentualne działanie żrące większości detergentów.

Płytowy wymiennik ciepła
Płytowy wymiennik ciepła

Opis płytowego wymiennika ciepła:

  • Posiada szczelną i spójną konstrukcje.
  • Wpływa na zmniejszenie ilości bakterii.
  • Obniża czas pracy kompresora zbiornika mleka.
  • Zmniejsza zużycie energii.
  • Szybciej ochładza mleko.
  • Zmniejsza wzrost temperatury mleka przechowywanego już w zbiorniku.
  • Może być używany do całkowitego schłodzenia mleka z pominięciem zbiornika głównego .
  • Dostarcza ciepłej wody zdatnej do picia.
  • Dostarcza ciepłej wody używanej do mycia wymion.
  • Pojenie krów ciepłą wodą zwiększa ilość dojonego mleka
  • Może być używany w systemach schładzania zwykłej wody, wody lodowej lub glikolu etylowego.

Co to jest płytowy schładzalnik ?

Płytowy schładzalnik to tak naprawdę płytowy wymiennik ciepła. Mleko ciepłe przepływa pomiędzy dwoma płytami urządzenia, które przeplecione są innymi płytami z płynącą zimną woda. Ten proces powtarzany jest na całej długości schładzalnika w poszczególnych sekcjach płyt. Firma PEARSON oferuje dwa typy schładzalników płytowych.  Model pojedyńczy oznaczony jako “M” oraz podwójny “MM”. Model podwójny to tak naprawdę dwa odzielne schładzalniki pracujące w jednym pomieszczeniu. Dwie oddzielne sieci wodociagowe zasilają schładzalniki z których pierwszy ochładza wstępnie a drugi chłodzi już wodę schłodzoną, co daje szybszy i skuteczniejszy efekt schłodzenia.

Kupujący i decydujący się na taki schładzalnik musi dobrze dobrać typ i wielkość urządzenia. Należy odpowiedznio skalkulować przepływ mleka we własnej instalacji dojnej i mieć na uwadze ewentualne zwiekszenie wydajności mleka czy wielkości hali udojowej. Wiąże się to z wyborem odpowiedzniej pomy mlecznej a najczęściej dwóch pomp z których pierwsza tłoczy mleko a druga może wspomóc mycie lub może pompować ewentualne „chore” mleko z odzielnej instalacji.

Wybór poprawnego typu schładzalnika

Zainstalowanie podwójnego wymiennika ciepła jest uzależnione od łatwego dostępu do zimnej wody. Ochłodzona woda może być pozyskana bezpośrednio ze schładzalnika mleka ze zbiornikiem wody lodowej albo z oddzielnego zbiornika zimnej wody. Użycie podwójnego schładzania może obniżyć temperaturę mleka zlewanego do schładzalnika do 4° C.  Tak niska temperatura hamuje w znacznym stopniu rozmnażanie się bakterii w mleku.

Dojarki rurociągowe, dojarki przewodowe, dojarki bańkowe, mierniki mleka, falowniki, zioła dla krów, drobiu, świń.