Archiwum kategorii: Pompa Podciśnieniowa bez łopatkowa AIR FORCE AF60

Pompa podciśnieniowa typu Rootsa, bez łopatek,

Hale Udojowe

Hale udojowe rybia ość, hale udojowe bok w bok, hale udojowe dla krów, hale udojowe dla owiec , hale udojowe dla kóz. System zarządzania stadem z identyfikacją, identyfikatory do ucha, licznik mleka , sterowanie bramkami, stacje paszowe.

kar4

części do dojarek , części do dojarek przewodowych

Rura podciśnienia PCV

– niebieska

śr. 50                   FI/RU50 NIEBIESKA

– zielona

śr. 50                       FI/RU50 ZIELONA

– biała

śr. 50                          FI/RU50 BIAŁA

śr. 63                          FI/RU63 BIAŁA

śr. 90                          FI/RU90 BIAŁA

– azur
śr. 50                           FI/RU50 AZUR

śr. 63                           FI/RU63 AZUR

śr. 90                           FI/RU90 AZUR

Rura podciśnienia PCV
Rura podciśnienia PCV

Łuk azur

śr. 50                    R170203

śr. 63                     R170204

śr. 90                     R170206

Łuk azur
Łuk azur

Trójnik azur

śr. 50                R170256

śr. 63                R170257

śr. 90                R170259

Trójnik azur
Trójnik azur

Korek azur

śr. 50                  R170590

śr. 63                  R170591

śr. 90                  R170593

Korek azur
Korek azur

Złączka azur

śr. 50                R170650

śr. 63                 R170651

śr. 90                 R170653

Złączka azur
Złączka azur

Redukcja azur

śr. 90/75/63           R170722

śr. 75/50                R170751

Redukcja azur
Redukcja azur

Części do dojarek, rury, kolana, łuki, zwężki, trójniki ze stali kwasoodpornej

Rura mleczna ze stali kwasoodpornej:

śr. 18 x 1,5 gr. ścianki         MAR 18×1,5

śr. 28 x 1,0 gr. ścianki         MAR 28×1

śr. 40 x 1,0 gr. ścianki         MAR 40×1

śr. 44 x 1,5 gr. ścianki         MAR 44×1,5

śr. 45 x 2,0 gr. ścianki         MAR 45×2

śr. 52 x 1,0 gr. ścianki         MAR 52×1

śr. 63 x 1,5 gr. ścianki         MAR 63×1,5

Części do dojarek - Rura mleczna ze stali kwasoodpornej
Rura mleczna ze stali kwasoodpornej

Kolano stal kwasoodporna:

śr. 25                                     RU/KOL 25

śr. 28                                     RU/KOL 28

śr. 34                                     RU/KOL 34

śr. 40                                     RU/KOL 40

śr. 52                                     RU/KOL 52

śr. 63                                     RU/KOL 63

Części do dojarek - Kolano stal kwasoodporna
Kolano stal kwasoodporna

Łuk stal kwasoodporna:

śr. 40                                    RU/ŁUK 40

śr. 51                                    RU/ŁUK 51

śr. 52                                    RU/ŁUK 52

Części do dojarek - Łuk stal kwasoodporna
Łuk stal kwasoodporna

Redukcja 34/28                                                                        RU/RED 34/28

Redukcja 40/34                                                                        RU/RED 40/34

Redukcja 50,8/32                                                                     RU/RED 51/32

Redukcja 50,8/38,1                                                                  RU/RED 51/38

Redukcja 52/34                                                                        RU/RED 52/34

Redukcja 52/40                                                                        RU/RED 52/40

Części do dojarek - Redukcja
Redukcja

Trójnik 3×40 mm                                                                     RU/T-3×40

Trójnik 3×50 mm                                                                     RU/T-3×50

Trójnik 3×63,5 mm                                                                  RU/T-3×63,5

Części do dojarek - Trójnik
Trójnik

Czy stosowanie falownika w dojarniach jest celowe?

W aneksie A.6 do normy ISO 5707 podano przykłady obliczeń wymaganej wydajności pompy próżniowej dla dojarni z 12 aparatami udojowymi (2 x 6) z pełnym wyposażeniem (ACR), w której dojone są krowy przy podciśnieniu 44kPa. Z przykładu tych obliczeń wynika, że rezerwa efektywna dla tej dojarni powinna wynosić 520 l/min. Po uwzględnieniu zużycia powietrza przez aparaty udojowe i uwzględnieniu dopuszczalnych nieszczelności rurociągów i regulatora itp., ostateczna wydajność pompy przy podciśnieniu 50kPa powinna wynosić 1260 l/min, po przeliczeniu podciśnienia z 44kPa na 50kPa.

Z przykładu tych obliczeń wynika, że rezerwa efektywna stanowi 42% wymaganej wydajności pompy próżniowej. Tyle to z wydajności pompy próżniowej nawet i trochę więcej powietrza wpuszczane jest przez regulator, gdyż nie zawsze aż tyle to powietrza jak dopuszcza norma zużywają aparaty udojowe, podobnie jak i nie zawsze są tak duże nieszczelności których górne granice ustalono w normie. Gdy falownik będzie właściwie dobrany do silnika elektrycznego napędzającego pompę próżniową, to o taką ilość powietrza (rezerwę efektywną) wpuszczaną normalnie przez regulator mogłaby pompa mniej przepompowywać.

W dojarniach typu „Rybia ość”, istnieją jeszcze przerwy w pracy aparatów udojowych, gdy wchodzą i wychodzą krowy z dojarni. W tym to czasie zużycie powietrza jest jeszcze mniejsze, gdyż nie pracują pulsatory i nie wpuszczane jest powietrze (około 10 l/min) do kolektorów. O tyle jeszcze można by zmniejszyć wydajność pompy próżniowej w czasie wymiany krów w dojarni, ale tego zmniejszenia nie uzyska się falownikiem. Podałem, że maksymalnie falownik zmniejszy o 56%, 48% lub 42% wydajność pompy próżniowej. Eksploatując falownik w naszej dojarni „Rybia ość” 2 x 4, uzyskałem zmniejszenie zużycia prądu o 34%. Normalnie w czasie godziny pracy w tej dojarni zużywamy 3,19kWh na godzinę doju. Po włączeniu falownika, zużycie prądu wynosiło 2,12kWh podczas godziny pracy dojarni.

Ostateczny wniosek jest taki, że zastosowanie falownika w przeciętnej dojarni, przyczyni się do zaoszczędzenia zużywanej energii do 30 do 40%. Sam falownik, który ma zawsze pracować zużywa na dobę 0,92kWh. W instrukcji falownika napisano, że przy podłączeniu go do sieci należy ustalić i zachować kolejność faz. Fachowiec, który go doregulowywał twierdził, że kolejność faz nie musi być zachowana.

W laboratorium i w oborze zachowaliśmy kolejność faz przy podłączeniach. Sterowanie i ustalanie wymaganych parametrów w falowniku nie powinno być tak mocno skomplikowane. W falowniku przeznaczonym do urządzeń udojowych, wystarczyłby jeden przycisk, którym ustalałoby się wymagane podciśnienie.